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) 3F INTRODUCTION

A great deal of attention has been focussed on the study of
parametric processes in plasmas because of their importance to both
laser- and beam-plasma interactions, as well as to anomalous heating
mechanisms. The thrust behind the present work is directed towards an
understanding of the parametric stabilization of beam-plasma inter-
actions. 1In all such processes, the underlying concept is a three wave
interaction in which a large amplitude pump wave (wo, ko) excites two
new waves (w3, k1 and wp, k2) subject to the requirements that
w, = w1 * wy and ko =k 2 kz. In the case of beam-plasma systems,
stabilization can occur due to the nonlinear transfer of energy away
from beam resonant modes via a parametric coupling of high and low
frequency waves. Recent work in this regardl‘5 has dealt largely with
unmagnetized systems, in which a wave-particle resonance is possible
only for longitudinal electron plasma oscillations. Nonlinear coupling
proceeds, therefore, between high frequency Langmuir and low frequency
ion acoustic waves, and may be treated within the context of the
electrostatic approximation.

The instability which arises from the interaction of a large
amplitude Langmuir pump wave and secondary (or daughter) Langmuir and
ion acoustic waves has been extensively studied in the literature®~9 in
a field-free plasma, for which two fundamental regimes of interest are
found. One case occurs for wy > w) and |ko|>|k1| (where we use wj, k1
to denote the secondary Langmuir wave), and is referred to as the para-
metric decay instability. In the opposite case in which w, < W) and

|k°|<|k1|, the oscillating two stream instability is obtained. We

Note: Manuscript submitted May 17, 1979.




observe that the phase velocity of the secondary Langmuir wave is
greater (less)than that of the pump wave for the parametric decay
(oscillating two stream) instability.

It is our purpose in this work to study the effect of weak
magnetic fields upon the oscillating two stream and parametric decay
instabilities. 1In particular, we are concerned with the effect of the
magnetic field on the angular variation in the instability thresholds
and growth rates. Direct application of the work is primarily to the
physics of electron streams in the solar wind, and on type III solar
bursts!*3 in particular. In addition, since the equations governing
the oscillating two stream and parametric decay instabilities are the
Fourier transforms of the equations governing Langmuir solitons, the
work has implications on the characteristics of Langmuir solitons in
a weakly magnetized plasma.

The organization of the paper is as follows. In Sec. II, we
define the physical configuration to be employed and derive the basic
equations governing the nonlinear coupling between Langmuir and ion
acoustic waves. These equations are solved in Sec. III for both a
dipole and monochromatic pump spectrum, and a numerical analysis is

presented. A summary and discussion is given in Sec. IV.
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II. THE BASIC EQUATIONS

The fundamental equations which describe the dynamical behavior of
the system are generalizations of Zakharov's equations for Langmuir
solitons!? to a physical configuration which includes a uniform ambient
magnetic field QO("gnéz). We write the ion and electron density in the

; formn, = n + fnandn = n_ + dn + §n  where n_ is the ambient densi-
» i o € o e o
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ty, &n denotes the low frequency fluctuation in the ion and electron
densities, and 5“9 is the high frequency component of the electron
density perturbation. In addition, we assume that there is no bulk

flow of either electrons or ions, and employ 62

and Su_ to describe
i A€

the slow perturbations in the ion and electron velocities, and 6¥e to

describe the fast electron velocity fluctuations. Finally, E and GE
are used to denote the low and high frequency components of the
electric field perturbations.

The first consider the equations which describe the high frequency
oscillations. In this case, the electron continuity and momentum
transfer equations, as well as Poisson's equations, can be written to

lowest order as

3 Sn
at 6ne " no(l ¥ ‘—‘;)V 8¥e = 0» (1)
. 3V? . -
¢ e (] on A
T éxe - SE - (1 + -~ ) VGne - Qe(éxe X ﬂz)' (2)
e e 0
U . SE = - Aneéne. (3)
|
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where v = (Te/me)s denotes the electron thermal speed, and

Q, = leBO/mecl. It should be noted here that second order terms in

Gne and Gxe have been neglected in (1) and (2). Elimination of 6ne and
Gxe from (1) - (3) ylelds, after some manipulation, the following

result

32 [ 22 2 $n 23292 2 2025 202
- (3t2 [Bt2 gl * n, —Bwexev s Qe] SRR -

S Sn 8
wie2 (1 hos ) Vg OE (4)

‘2: 2 = :AA-
where wg = 4me no/me, Ae = ve/we, and Vy = gz(gz V). If we note that

VZV" « 8 = Vﬁ V + SE, then it is clear that
(%:-2 v2 [g_if + w§(1—3A§V2) - 95] + mgngv'f(l-sxgv%)ag =
2 (o232 2¢2) Sn
sl (v =z * QeV") ;; SE- (5
After Fourier transformation in space, (5) becomes
(B oo 3o i i) anceo -
-~ wi(g—:z + ;}‘E— ng) fd3k' -Gn—(f;—k':f—)ﬁg(k',t), (6)

2 = .2 2% 2
where wi = we(l + 3k Ae), GE(R, t) and 6n(k,t) are the spatial Fourier

amplitudes associated with the wavevector k, and k" = k . éz'
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The fourth order linear differential operator on the left-hand-side

of (6) can be written as the product of two second order differential
operators (32/3t? + wf) (32/3t2 + wg). where
2
it

2 s
- SR ey 2 1 2 2y 202
wl,z Z(wk + Qe) t'i [(wk + Qe) 4 kz Uer ’ (7)

and reduces to the usual cold plasma resonance frequencies in the limit

T, » 0. Substantial simplification occurs only in the limit in which

e
2 p -

Qé << wg 'S wﬁ, where (for ki z kz-kﬁ) w% = wﬁ + (kf/kz) Qg and

wg = (kﬁ/k?)Qé correct to within terms of order (Qe/me)“. In this

regime, Eq. (6) can be written in the comparatively simple form

32 2 kf 2 wg 3y, ) . L]
32 o YRz 92 )SEGt) = - o [ d k" Sn(k-k',tISE(k',t). (8)
o

Finally, if it is assumed that ég(k,t) = Re[?E(k,t) exp(—iubt] , where

kég(kst) = kSe(k,t) and |(B/Bt)éc(k‘t)|<<we|55(k,t)|. then it follows

that
k2 92 w k.k'
L) 3 - N ) . AR T N
( o " 2 we(kxe) "2 kKl w )Gc(k.t) 2n ats (k k')

X Gn(k‘K"t) 6c(k'.t) 9)
for (kxe)2 << 1.

In the treatment of the slow frequency ion oscillations we assume
that the wave frequency is much greater than the ion gyrofrequency and
the wavelength is much less than the ion Larmor radius. 1In such a

regime the ions are effectively unmagnetized, and we write the ion

continuity and momentum transfer equations




3
‘3? Sn + no ' 6]61 w (). (10)

3
B e Wy TRV - v T, Y, (11)
If it is assumed, in addition, that the wave frequency w << k"ve, then

the low frequency electron response can be described by

0= - enog o yeTeVSn. (12)

where the electron inertia has been neglected. 1In (11) and (12),
éa‘ Yoo and Ta(a = i,e) are the ion and electron ponderomotive
potentials, ratio of specific heats, and temperatures respectively.

Combination of (11) and (12) immediately yields

32 2 g2 1 .2
(5?7 e v ) Sn ;iv (¢1 + ¢e), (13)
where cg (YiTi + ye'l‘e)/mi is the acoustic velocity. Tt can be

shownl1+12 that the ponderomotive potentials are given by
= = 2 2
¢ (mi/me)¢1 §g°/8n correct to within terms of order (Qe/me) and

Aélvv-5i|/|5£|. As a result, we may write that

(k=k')« k'
32 2.2 o u et ety 6N
(m’r k cs)én (k. t) Térm, fd k k'l'é“é'l &e* (_15-{5‘.0
QZ
e 2,2
X 5€(k",t) + 0 (Uez y & AE‘). (14)




Equations (9) and (14) constitute a pair of coupled nonlinear

equations for the high and low frequency perturbations. In order to

linearize these equations we assume that Se(k,t) = eo(k,t) + 5€1(k:t)’
where éso and 8¢] represent Langauir pump and daughter waves i
respectively and it is assumed that §e¢; is a small perturbation. The

pump spectrum is taken to have a width A%o centered about Eo’ and for

sufficiently small Ako we obtain

3 k2 ~2 g
(3; 1 we(k)\e)z "‘2‘ ﬁ:‘%)&ll (k t) = _“—/dak' ('———)

x en(k-k' e (k',c), (15
and

)2 (k-k')*k
(3;7 - k2c§) $n(k,t) = ~ 16Em d3k' ~ET%—ETT- <€ (k'»t)sek(k-k',¢t)

(16)
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ITI. THE DISPERSION EQUATION

by means of Green's function techniques, and we write

’ k) Gelkst=t') = ~ 2x8(e-c"),
(%%7 + k:ci) Gn (kyt=t') = - 278(t-t"),

where we define for convenience

ke 02

. 3 S i
'k 2 9(’\ c’) 8 2 F W

- (S

Combination of (15)-(17) readily shows that

W o R
‘n(k,t) = R f dt fd k mrf— G, (k,t-t")
1 s N

Bt ty2-Xry 1 ' W e v 9 1y s v, '
x <=0u\_ ¥ ).:,:k§ gg‘.t ) + ‘~o(‘:1t yiE ).el(\\".t )),

and

£ ow i & = ¢ 3 i N
If we now write _O(E,t) -O(k) exp(i.kt) and eliminate £ from

(18) and (19), we find after some lengthy manipulations that

The dispersion equation may be obtained from Eqs. (15) and (16)

17)

(18)

(19)




k2w .
('a—{?* k2c§)5n(;§,t)=mﬁ— f dt'én(k,t") d3k'|eo()6')|2
i o

32

“k')ek' \2
X [(:,6 ;:_;.k )Ge* (k—k',t-t')exp[iﬂh.(t'-t)]

Gt k) 2
E?TEIETT—) Ge(k+k',t-t’)exp[iﬂk.(t—t')]] . (20)

% v = Y 2
where we have made use of eo(k)eo(k ) 6(& k')[eo(k)l in the
derivation. Upon Fourier transformation of (20) with respect to time,
we then obtain

" Wtk 1 Gk k'Y
Zh2c2 w - 28 3A2f3.° '
RS ke, Tl BT g (k Tk T

etk k" \ 2
x 6% (k' hwma') + (;Sﬁg;EJF—) G, Utk »urtw") (21)

where\do(k') = |eo(k')l2/8n is the spectral energy density of the pump
spectrum. In the further evaluation of (21), we employ a cylindrical
coordinate system aligned with the ambient magnetic field in which ¢
(or ') denotes the azimuthal angle. As a consequence, the dispersion
equation takes the form

w, (k")
n T
o e

m
R - SO T 2 3t
w k2c2 5 == w2(kA) fdk

i

x wellg (wik, k') (22)
(w, + wl)2 = (w-3mekk'ﬁzcosw +w,)?’




where wy = 3me(kke)2/2. cosy = [klk"‘ + klkl'003(¢‘¢')]/k k',

'@ 2/(v2 v2 2,2 12 2y 2 3
2 Ec (k*+k'“ ) (k' kJ. k k* )4k k' k“'(kcosw—k“)cosq] (23)

o
w S ) o 4 V€Y el et Smmms '
17 2w Kok [k +k 4k“k'“cos w]
Q2 @uk“'(k?+k'3)-k k'(k§+kh?)cosw]
¥a G: TR DY 7KK T eos Ty ' (5)
' ksf’
.\.‘l.(m.k,.k Y 3 1-0(1 + kT)] (mA + wl)
K 2
+ 2 e 0 cos&(m—)wek k'\UCUSW +w,), (25)

and ¢ = k'sin?yp L(k? + k'2)7 - kak'?coswa Ay

A. The Dipole Approximation

The dipole approximation is recovered in the limit {n which the
wavelength of the pump tends to infinity while the wavelength spread
tends to zero, and we write Qn(&')' WO(ani)"G(kl)é(kﬁ). Amblguity
remains, however, in the direction of the electric tield of the pump,
and we choose this direction to be parallel to ko by setting
cosy = ky/k, wp = (k§/kH0Z/20,, and w, = 0(f.e., we take the limit
k' + 0 by letting k; > 0 first). As a consequence, the dispersion
equation in the dipole limit is of the form

w, N

m k“ W » Ak([

R M ek g e
3 m, k* “oTv Yo m‘-§§°

(26)

5 PN,
we - k. CeY =

R

e ekl




Equation (26) can be analyzed graphically by plotting the left

and right hand sides versus w”’. This is shown schematically in Fig. 1

in which

2Y m k= PRt
L(w®) = w k g

and

) w,N
e T
s Im, k0T % w? - g2 ° :
i 0 e k

It is clear that the instability {s purely growing (i.e., has zero real

frequency), and occurs only if R(w® = 0) < L(w® = 0). The threshold

condition, therefore is of the form

where we have chosen Yv = 1. It is important to recognize that while
(ﬂv/mp)? has been assumed to be small, the effect of the magnetic
field on the threshold condition can be significant when (k\o)? << 1
and (k /K7 « 1.

The solution to Eq. (26) takes the form

2
” Wew, N " "
) mokd YeVa W 9?2 K YT
0 - 1‘ . U K . - (w?,\g + -3 %) (1+~‘»~‘).
©

m k2 k?cg + 0 InT 3

K oe "

ﬂ] 7:“)

As a result, we find immediately that



2 2 2
in the limit in which me/m1 < 3(kAe) + (Qe/we) (kxlk) < wo/noTe' In

2 2 2
the opposite case, in which 3(kAe) + (Qe/me) (k;/k) < wo/noTe and

me/mi’ we find that

2 w,N 2 12
wz:_;_lEk" 2 ﬁ&-kz 3k2>‘2,,,Qek‘L 1+Y1_T1.
3m kZ Y%e k2¢2 |n T k7 e wZ k?Z T »
i s| oe [} e e

with a growth rate of

2 2 -2
T e 2 + Ek! 2 (30)
max ~ "4 V&2 n T P We*
o'e e
B. The Case of a Monochromatic Pump

In this case we assume that the pump spectrum is aligned with the
'Y - 11 ' ¥
ambient magnetic field and choose wo(k ) wo(Z'rrk_L ) dS(k_L )6(k“ ko).
= = 1212 2 2y2 _ 412127-1
Thus, we have that cosy k“/k, @ kZk [ (k2 + ko) Ak"ko] :
192 k2
e o
“"7a (1+I7)'

and
82 kyk
= —e ® o
w2 o = kT .
e
It is important to recognize that the value of © for k¢ = 0 and

kﬂ = % k0 is dependent on the order in which the limit is taken. The

source of the ambiguity is that this limit implies an interaction with




a dipole (i.e., k 1 K' = () daughter wave, and one must then specify
the direction of the oscillation electric field of the daughter waves.
We shall assume in the remainder of this work that the wave electric
field of the daughter spectrum is parallel to the pump (and to ko) in
this limit, so that d(kl = 0, k' = 3 ko) = (). With this borne in mind,
Eqs. (22)=(25) can be shown to reduce to the following quartic

equation in

m W
2 2 02y ¢ Y T N .
(w* = k¢ \S)(w"\n*‘\(m‘m_) e n T ‘% &As.f(u,k.koiz). (31)
{ oe
vhere
= -»f"_g‘:.‘!“ " K (32)
s | e 2w (k24k?) 4 2k k
e (8] (8] n

Eq. (31) has been solved numerically for a wide range of
wavelengths and directions of propagation under the assumptions that
ko‘e = (.01, Ti = Tv. and 5/3. Some typical spectra are shown in
Figs. 2 and 3, in which we plot y/we (where y = Imw) versus k\e for
several values of ¢ (defined to be the.angle between k and Qo) and
Ce/we. In Fig. 2, we display the typical characteristics of the
spectrum for Wo/noTe = 0.001 and (a) Ce/we = (0, and (b)ﬂe/we = 0.05.
The dotted line indicates the pump wavelength. It is clear that, as
expected, the spectrum is independent of Qe for the case of parallel
propagation, for which peak growth occurs at k = ko for the parameters
chosen. It should be remarked, however, that this i{s not a general

characteristic of the growth rate of parallel propagating modes, and

that peak growth occurs at k & k  for NO/noTe < 0.001 and at k @ k_

13




for kL/noTe > 0.001. For oblique angles of propagation the growth
rate vanishes in the vicinity of k = ko' and a double peaked structure

appears which describes the parametric decay and oscillating two

stream instabilities. The presence of a magnetic field, typically, has

a stabilizing influence on the obliquely propagating modes. In both
cases shown in Fig. 2, the growth rate of the oscillating two stream
instability decreases rapidly to zero with increasing 6, and the range
of angles over which instability is possible decreases with increasing
Qo. The parametric decay instability is comparatively less sensitive

to the magnetic field strength for the given parameters.

Additional structure appears as the pump amplitude is increased,

as shown in Fig. 3 for h‘o/noTe = 0.01. 1In this case, the range of §

over which instability for k > k0 occurs is enlarged, and additional

structure is found when k = ko. Specifically, the growth rate does not

vanish for k = ko, and an additional peak is found when k = ko for
small 2 in the field free limit.
In order to shed light on the dependence of the growth rate on 6

Q ; J
and ”e/”e’ we plot the instability threshold, denoted by (ho/noTe)thr,

versus k\e in Fig. 4 for (a) Qe/me = 0, and (b) Qe/we « 9.05. 1It is

evident that (No/n T.) v (kke)2 for 6 = 0° as in the limit of a

o e’ thr
dipole pump (27):; however, such behavior breaks down when k = ko for
oblique angles of propagation. Further, it is clear that in order to
excite a full angular spectrum for k > ko a threshold of
UO/nOTe 2 0.002(0.08) is required for Qe/we = 0(0.05). This is shown

in more detail in Fig. 5, in which we plot (WO/nOTe) versus Qe/we

thr

for several values of @ and (a) k = ko, and (b) k = 2k0.

14
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The dependence of the angular range of the oscillating two
stream instability on ko is shown in Fig. 6 in which we plot the maxi-
mun growth rate y . for k » ko versus 0 for koxe = 0.01, Qe/we = 0,
0.05, and 0.10, (a) &%/noTe = 0.001, and (b) WO/nOTe = 0.01. Evidently,
when wo/noTe = 0.001, instability occurs only for 6 « 10° in the
field-free limit, and decreases sharply in angular extent with
increasing QO. As the pump amplitude increases the angular spread of
the excited spectrum also increases, as shown in the figure for
WO/noTe = 0.01. In addition, while is no longer a monotonically
decreasing function of Qe/we for all 6, substantial reductions in the
growth rate are seen to occur over a wide range of angles as Qe/we
increases. The variation of L with Qe/me is shown more clearly
in Fig. 7.

Finally, we point out that for wolno'l’e = 0.001 and 0.01, the
parametric decay instability shows small variation with Qe/me and ©
in relation to the oscillating two stream instability. This is due to
the fact that these pump levels are above thresholds for peak growth
with k < ko. This is demonstrated in Fig. 8 in which we plot Youw for
k < ko versus Qe/we for 6 = 0°, 20°, 40°, and 60°, koxe = 0.01, and

(a) wo/noTe = 0.001 and (b) wo/noTe = 0.01.

15
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IV. SUMMARY AND DISCUSSION

We have studied the parametric decay and oscillating two stream
instabilities in the presence of a weak external magnetic field, and
derived a dispersion equation which can treat the case of pump spectra
with small, but finite, spreads in wavelength. The result is valid for

low frequencies and weak magnetic fields in which Q, << @ << k?ve
I

i

(where Q, is the ion gyrofrequency) and wi > Qi. Since w v kcs, we

i
must also require that k“/k >> me/mi. It should be pointed out that in
(7) wy 5 describe the upper and lower hybrid frequencies respectively,
and that in this limit, therefore, the high frequency oscillations may
also be considered as upper hybrid waves.

A few remarks are in order concerning the relationship between the

directions of the ambient magnetic field, the pump spectrum, and maximum

growth. For the cases considered here, in which the pump spectrum is

aligned with the ambient magnetic field, the direction of maximum growth
is found to be colinear with &o as well. While it is difficult to deter-

mine a general rule concerning this relationship, insights into the

general angular spectrum of the daughter waves can be obtained by con-
sideration of the dipole limit. 1In this case we let (eo,vo) and (6,9)

denote the polar and azimuthal angles of the pump and daughter waves

respectively, and find that wy = (Qﬁ/Zme)(sinze - sinzeo). w, = 0,
8. &
cosy = cos@ cose0 + sin@ sinGo cos(Q—wo), © sin“y, ﬂk w, + W) and
Qf = Qh cos?y. As a consequence, the instability threshold is of the
-
form (wo/noTe)thr 2 cos™ 4y Qk(l + yiTilTe). Minimizing this with
respect to 0 for constant (k,p) yields

16




0 2 0 2 -1
e B - (3 2
tan 8 = tan 00 cus(y—qu) 1 - — Jk‘ke‘ + —7 cos“H

e e

g

(33)

Examination of (33) shows that the minimum threshold and, hence,
| maximum growth, for given k, is colinear with the pump wave only (1) in

i the flield-free limit, and (2) for 00 = (0 (i.e., when the pump and 20 are

aligned) in a magnetized plasma.

For the sake of simplicity, solutions to Eqs. (22)-(25) are

S-S - g

restricted to the cases of dipole and monochromatic pump spectra which
are in alignment with Qo. and a substantial modification of the angular
: character of these instabilities is found to occur when k:\g " Ré/u;.
In particular, instability thresholds tend to be enhanced, and growth
rates decreased, for waves propagating at an angle with respect to 20'
We conclude, therefore, that a small external magnetic field acts as a
stabilizing influence for waves with finite k and, since ki, << 1 for

many applications of practical interest, can be an important considera-

tion in the stabilization of beam-plasma interactions even for weak

P e

field levels. Finally, because the dynamical equations for the oscil-

lating two stream and parametric decay instabilities are the Fourier
transforms of the equations which define Langmuir solitons!?, we specu-

late that weak magnetic fields may act to inhibit soliton collapse in

the direction transverse to Eo.
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